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Abstract-The effects of thermal wall resistance on the onset ofcellular convection motion in a fluid confined 
inside an inclined slot having a very large aspect ratio and subjected to convective boundary conditions are 
investigated analytically for the longitudinal and transverse rolls, and numerical calculations are performed 
for the case of Pr = 0.72. In order to establish the range of validity of the lumped parameter analysis used in 
some of the previous work on the effects of walls on stability criteria, the present results are compared with 
those obtained by the lumped parameter analysis. It is shown that, when the thermal conductivity and the 
thickness of the walls are about of the same order of magnitude or larger than those for the fluid, the results 
based on the lumped parameter analysis are unrealistic. The effects of walls on the transition angle for the 

cross over from the longitudinal to transverse rolls are investigated. 
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NOMENCLATURE 

dimensionless wave number ; 
thickness of the fluid layer; 

gravitational acceleration; 
external Grashof number, yg(TmI - 

T,z)d3/v2; 
heat transfer coefficients ; 
Biot numbers based on fluid conduc- 
tivity, H = hid/k ; 
Biot numbers based on wall conducti- 

vities, H,i = hid/k,; 

thermal conductivity of fluid ; 
thermal conductivity of the lower and 

upper wall ; 
height of slot; 
Prandtl number, v/u; 
external Rayleigh number, yg(T,, - 

T,,)d3/av; 
internal Rayleigh number, rg[T(O) - 
r(d)]d3/av; 

lower and upper wall thickness ratios, 

Ii/d ; 
lower and upper wall thicknesses ; 
dimensionless time, w/d2 ; 
fluid temperature; 

environment temperatures at the lower 
and upper walls respectively; 
dimensionless perturbed velocity com- 
ponent in y-direction; 
characteristic velocity, Yg(T,I - 
T,,)d’ . cos 6/v; 
Cartesian coordinates with y measured 
normal to the walls; 
= (X, Y)/d. 
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Greek letters 

a, 
%:1, a2, 

Y, 

thermal diffusivity of the fluid; 
thermal diffusivities of lower and upper 
walls, respectively; 
coefficient of thermal expansion for 
fluid ; 
parameters defined as, cr/cr,; 

angle measured from horizontal; 
transition angle; 

dimensionless perturbed temperatures; 
lower and upper walls conductivity ra- 
tios, kiJk; 

kinematic viscosity; 

dimensionless perturbed stream 
function; 
time. 

Superscripts 
mean quantities; 

* refers to perturbed quantity. 

Subscripts 

refers to outside environment ; 
lower and upper wall respectively. 

INTRODUCTION 

THIS PAPER is concerned with the effects of the thermal 
resistances of the walls on the stability of natural flow 
in the conduction regime inside an inclined slot. In an 
earlier work on this subject, Ostroumov [l] evaluated 
the critical Rayleigh number for a viscous fluid heated 
from below inside an infinitely long circular cylinder 
with an infinitely thick wall in terms of the ratio of the 
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wall thermal conductivity to the fluid conductivity. 
The same problem was studied later by Slavnov [2) for 
the case of finite wall thickness. Other investigators 
[3-51 included the effects of convective boundary 
conditions but neglected the thermal resistance of the 

walls. The effect of wall thermal resistance on stability 
for the Benard problem was studied by Hurle, Jack- 
man and Pike [6] by assuming that the fluid was 

bounded by two solid walls of infinite extent and 
having identical finite thermal conductivity. Later on, 

Nield [7] considered a similar problem, but only for 

the case when the fluid was bounded below by a rigid 
wall of infinite conductivity and above by a solid wall 
of finite conductivity and finite thickness. 

The stability of natural flow in a narrow vertical or 
inclined slot having walls kept at different isothermal 
temperatures has been examined 18-191 for all 
Prandtl numbers. These results confirm that instability 
occurs as either two-dimensional longitudinal rolls 

which are dominant in the range of angles of in- 
clination 0 -=c 6 < 6,, or as two-dimensional transverse 

rolls in the range 6, -C 6 2 90, where ~3, is the 

transition angle (i.e. for transition from longitudinal to 
transverse rolls) measured from the horizontal. When 
transverse rolls have priority of occurrence over 

longitudinal rolls, instability sets in as stationary cells 
for Pr < 12.7 and in the form of travelling waves for Pr 

> 12.7. 
It is apparent from the aforementioned survey of 

literature that the effects of the conductivity and the 
thickness of both walls on the stability of a fluid in an 
inclined slender slot, subjected to convective boundary 

conditions, have not yet been studied. 

Consider a layer of fluid of thickness d, kinematic 
viscosity P, thermal conductivity k, thermal di~usivity 
~1, and coefficient of thermal expansion y. contained in 

a narrow inclined slot. The lower surface of the Auid 

layer is bounded by a wall of finite thickness [I and 
conductivity k,. while the upper surface is bounded by 
a solid wall of thickness tz and conductivity li,. These 
walls are subjected to con%ective boundary conditions 
at their outer surfaces, such that, h, is the heat transfer 
coefficient at the lower surface and h, is the heat 

transfer coefficient at the upper one. If the environment 

temperatures T, , and T,,. illustrated in Fig. I. are 

such that T, I > T, 2. a unicellular convective motion 

sets up so that fluid near the hot plate rises upwards 
and that near the cold plate flows downwards. If the 
temperature difference, T, l -- T, 2r is gradually 
increased, the initial laminar flow between the plates 
breaks up and a secondary flow sets up in the form of 
two dimensional multicellular convection. To in- 
vestigate the conditions for the initiation of such an 
instability in the flow field. the linear perturbation 
theory is applied to the governing equations of motion 
and energy in the Boussinesq approximation. After 
eliminating the pressure, the resulting differential 
equations governing the formation of the longitudinal 

and transverse rolls are given in the dimensionless 
form. 

Equations for the longitudinul roiis 

I 

i 
- - iD2 - ai) {D2 - u:)r* = .--a$?*cOsti 
i:t i 

I) c:j’< 1 (la) 

r ^ 
Pr ( it .- (D” - u:) #* + Ra,D&* = 0 

I 

O<ci! ilbt 

Equations,for the transverse rolls 

[ 

i; 
- 
c’t 

- (132 - u:, 1 (DZ - u;,r* 

+ ia,Gr, sin &[u,(D2 -. a:) - D2Cir]~* 

= -(a@* COSS + ia,D@*sin6) (hi 

-I- i~~Ra~~,.~* sin fi + ~~i~D~~* = 0. (lb) 

Equafionsfor the lower and upper wails 

where 7i = cr/ai, i = 1.2, is the diffusivity ratio, u1 is the 

wave number for the transverse rolls and a2 for the 

longitudinal rolls in the x- and z-directions respec- 
tively. It is to be noted that the Prandtl number, Pr. 
appearing in the equations for the walls results from 
the fact that the dimensionless time is defined as t = 
7v/ci2, where z is the dimensional time. The boundary 
conditions for the above equations are taken, for the 
case of rigid walls as 

[‘* = Dt:* = 0 at J = 0, t (4,1 

N* = e:, Dt?* = tiw,DO~ at J = U (4bl 

H* = II,. DB* = tiW,DSp at J* = 1 (4CJ 

DBT - H,,,,B; = 0 at 1’ = -S, (4d) 

DH: + Hw2f?; = 0 at I‘ = 1 + Szf4e) 

where D = a/i-y; u* is the dimensionless component of 
the perturbed velocity normal to the plates; @*, 0::. and 
0; are the perturbed temperatures in the fluid, and in 
the lower and upper plates, respectively; and x and J 
are the dimensionless coordinates parallel to and 
norma to the walls. In addition, S, and S, are the 
dimensionless thicknesses of the lower and upper 
walls; Gr, and Ra, are the external Grashof and 
Rayleigh numbers which are defined on the basis of the 
difference between the temperatures 7’ f 2 and ?‘ , 2 of 
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the environments. H,, and H,, are the Biot numbers 
for the lower and upper walls based on the con- 
ductivity of the walls respectively ; ?cwl and K,~ are the 
conductivity ratios of the lower and upper plates 
respectively; yi and y2 are the diffusivity ratios of the 
lower and upper plates and 6 is the angle of inclination 
measured from horizontal. In equations (3), the sub- 
script i = 1 stands for transverse waves and i = 2 for 
the longitudinal waves. The quantities fl, and De refer 
to the dimensionless base flow velocity component in 
the x-direction and the base flow temperature re- 
spectively. They are determined from the base flow 
analysis in the conduction regime as 

ii” = ;yU - y)(l - 2y); 

De= - l+[&+$j+[&+$] @) 
where Hi = hid/k, i = 1,2. 

The analysis for longitudinal rolls 
It can be shown by the principle of exchange of 

stabilities that, in the case of longitudinal waves 
defined by equations (l), (3) and (4), the instability sets 
in as stationary cells, not as overstability. This matter 
is discussed in the Appendix. When the longitudinal 
rolls have priority of occurrence over transverse rolls, 
the free convection occurs in the form of stationary 
rolls and one can set a/at = 0 in the analysis of 
stability. 

The solutions of equations (3) subject to the con- 
ditions (4d) and (4e) are taken as 

0: = A[a, cash a2(s1 + y) 

+ H,, sinha&, + y)] (6a) 

0: = B[a, cash a,(1 + s2 - y) 

+ Hw2 sinh a,(1 + s1 - y)] (6b) 

where A and B are constants. 
Conditions (4b) with equation (6a) give 

&OS* = K,&@ = ll 
1 

or 

De* - c1f3* = 0 at y = 0. (7a) 

Similarly, the conditions at y = 1 is 

Do* + t2f?* = 0 at y = 1 (7b) 

where 

li = KwPt 

H,i + a2 tanh azsi 

H,,,{ tanh a2si + a2 1 ’ i = 1,2. (7c) 

Now, by setting a/& = 0, equations (1) reduce to 

(D’ - a:)‘u* = a@* cos 6 (84 

(0’ - a:)@* = Ra,Dt%* (8b) 

and the boundary conditions (4d) and (7a, b), for the 
case of ‘two rigid walls’ are written as 

V* = Dv* = DO* - clO* = 0 at y = 0 (9a) 

u* = Du* = DB* + &f9* = 0 at y = 1. (9b) 

For the case of ‘lower wall rigid and upper one free’, 
which is applicable for the horizontal position, the 
above differential equations (8) and the boundary 
conditions (9a) at the lower rigid wall are still applic- 
able; but the hydrodynamic and thermal boundary 
conditions at the upper surface will be replaced by 

u* = D%* = De* + H2g* = 0 at y = 1. (SC) 

The solution for longitudinal rolls. The above eigen- 
value problem for the longitudinal rolls is solved by 
the application of the Chadrasekhar Method for the 
cases of ‘two rigid walls’ and ‘lower wall rigid, upper 
surface free’, because this method converges very fast 
and gives quite accurate results in few approximations 
[20] with this type of problem. To perform the 
analysis, the function u*(y) is represented in a series of 
orthogonal functions Q,,, in the form 

o*(Y) = f AJWY) 
III=1 

(104 

where, the orthogonal function Q,(y) are taken as [20] 

%(Y) = 
cash a,y - cos a,y 

cash a,,, - cos a, 

The auxiliary eigenvalues a,s are the roots of the 
transcendental equation 

cash a cos a = 1 (both walls rigid) (lla) 

coth a - cot a = 0 
(lower wall rigid, upper one free). (1 lb) 

The above solution (10) for u* is introduced into 
equation (8b), and the resulting equation is solved to 
determine 0* analytically. The approximate solutions 
thus obtained for II* and 8* are then introduced into 

Fig. 1. Cross-section of the physical problem. 
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equation (8a) and the orthogonality conditions of the 
Q,,, functions are utilized to obtain a set of infinite 
algebraic homogeneous equations. By truncating these 

equations after R: terms, the resultant set yields an N x 
N secular delerminant for the determination of the 

external Rayleigh number Ru,. 

where 

1’ (I,,,,, + (I;( Ru, cos fi)h,, ‘I = 0 (121 

(~,,,n = i’ (D2 - &2$,,(?,)Q)n(4.)d> (13a) 

Here in equations (13) the two integrals are performed 

analytically. Once these integrals are known, the 

external Rayleigh number, Ra,, is computed by satisfy- 
ing equation (12) for different values of the wave 

number ‘u2’ with each fixed system of input parameters 

‘H,. H,, K, ,. K,,.~. S,, S,‘. The minimum of these 
Rayleigh numbers for each system of input parameters 
establishes the critical Rayleigh number, marking the 
conditions for the onset of instability associated with 

the occurrence of longitudinal vortex rolls. 

The unulpsis jar rrunswrw rolls 

The stability problem associated with the transverse 
rolls are governed by the differential equations (2) and 
(3) and the boundary conditions (4). We note that the 

equations (2) are complex, as a result their solutions I’* 

and 0* are complex functions. The wall equations (3) 
and their boundary conditions (4d,e) at the outer 
boundaries are real, but at the inner boundaries the 

boundary conditions (4b,c) are coupled to the fluid 

temperature O*, which is complex. Therefore, the 
solution for the wall temperatures is expected to be 

complex. 
We assume a disturbance in the form 

[$*(.r, 0. fl*(!,. r I] = [$(J), Q(l;)]ec’ (14) 

and introduce this result into equations (2)-(4), and 
follow a procedure described previously. The thermal 
boundary conditions at the interior surfaces become 

DO T 2,11 := 0 at J’ = 0, 1 (15a) 

where 

i= 1.2 (15b) 

and 

h = [(I: + (;‘iPrc)2]‘,4 ervj2 

q = tan ’ 
yiPrc 

cm--- -J. 0: 

Here, the parameter c is in general a complex number, 
therefore the coefficients Li (i = 1,2) are complex too. 
For the case when the stability sets in as stationary 
cells, we have c = 0. Then the expression for j+ 

becomes real and similar to the parameter 5, which 
previously appeared in equation (7~) for the longitu- 
dinal rolls. 

It is apparent from equation (15b) that the wall 

parameters K,,,~ and si affect the coefficients Li which in 
turn affect the onset of stability. t-or the limiting case. 

K,, + / (or i.i + fz), that is when both boundaries are 

perfectly conducting, the analysis reduces to the one 

discussed in references [8 191 in which the transition 
Prandtl number (i.e. the value ofthe Prandtl number at 

which change over from the stationary cells IO the 
travelling waves) has the value Pr, - 12.7. Fur the 

other limiting case, ti,., ---) U (or ,., -+ 0). which 
corresponds to the nonconducting walls, the transition 

Prandtl number has the value f’r, r- 0.05 [Xl!. 

Therefore, for the intermediate cases of finite wall 

conductivity and finite wall thickness, the transition 
Prandtl number should lie between the above t~1.1 

limits, that is, 0.95 < Pr, < 12.7. No experimental data 

are available for the value of the transition Prandrl 
number for the cases when the wall conductivities are 
of the xame order of magnitude ~$5 the fluid con- 
ductivity and with convective boundary conditions. 

Therefore, based on the arguments given above. so 

long as Pr < 0.95, it is expected that the transition 
from the conduction regime to the multicellular rc- 

gime, for the case of transverse waves should occur in 

the form of stationary convective cells. 
Therefore, by restricting the present analysis for 

fluids having Prandtl number Pr c 0.95. the equations 
governing the transverse waves arc obtained from 
equations (2) (3), by setting ?;;I -~ 0 and replacing the 
velocity I.* by the stream function I//* (i.e. ti* ~. 

i~*/a, ). We obtain 

(16al 

116b) 

$* = D$* = DH* + i.,fi* = 0 at J’ = 0.1 (17) 

where, the real parameter i ~ is obtained from equation 

(I 5b) by setting c = 0. 

lj = K,,iU1 
H,., tanh N , Y, + N I 

118) 

The .solution ,for the trunsrersr w//a. ‘The above 
system of equations for the transverse rolls is solved by 
the Galerkin method which has been applied success- 
fully in the problems of hydrodynamic stability [l 1. 
17?19]. In this method, the functions $* and t)* are 
represented in the form of orthogonal infinite series. 
The orthogonal functions are so chosen as to satisfy 
the boundary conditions for the problem. These 
expansions are taken in the form 1201 
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fl* = f Crnezn.(~) + i g k@2,-1(Y). W) 
m=l m=l 

The orthogonal functions (I),,, and the eigenvalues 
associated with them are given by equations (lob) and 
(1 lb) respectively. The orthogonal functions B,,,(y) and 
the eigenvalues associated with them are taken as 

L(Y) = Pm cos LY + A sin B,Y (20a) 

tan B = ml + J.2) 
p - Rl?.2 . 

G’Ob) 

The coefficients A,, B,, C, and D, appearing in 
equations (19) are unknown constants. Substituting 
the expansions given by equations (19) into equations 
(16), equating the real and imaginary parts on both 
sides of each equation, and orthogonalizing, one 
obtains an infinite set of linear algebraic homogeneous 
equations. If these expansions are truncated after N 
terms the resultant set yields 4N equations for the 4N 
unknowns. The nontrivial solution of this system is 
characterized by the condition of the vanishing of the 
determinant which is written in the matrix form as 

IIH,,,,II =0 for n= 1,2,3 ,... (21) 

where the elements H,, are real matrices of order 4N 
x 4N resulting from the orthogonalization. 

We investigated the effects of various system para- 
meters, such as Hi, q+ si, i = 1 or 2, on the critical 
Grashof number for the transverse rolls for Pr = 0.72. 
The value of Gr, g 8000 at the vertical position for K,,,~ 
= co changes only slightly with these parameters and 
the inclination in the range where the transverse rolls 
were dominant [21]. 

RESULTS AND DISCUSSION 

We now present the effects of the wall thickness 
ratios s1 and s2, the wall conductivity ratios K,,,~ and ~,2 

and the Biot numbers H,, and Hw2 for the lower and 
upper surfaces respectively, on the initiation of con- 
vective motion characterized by the critical internal 
Rayleigh number Ra,. The internal Rayleigh number, 
Ra is defined on the basis of the difference between the 
base flow temperatures at the inner surfaces as 

Ra = YdT(O) - mld3 
CCV (22) 

where T(O) and T(d) are the base flow temperatures at 
the inner surfaces of the lower and upper plates 
respectively. The external Rayleigh number, Ra,, is 
defined on the basis of the difference between the 
outside temperatures, T,, - TE2, as 

Ra, = YS(T,, ; T,,)d3, 

Then the relation between Ra and Ra, is given by 

where 

T(O) - ;i‘(d) 

T - 7-z, 

=(-De). (25) 
CC1 

Here, (00) is the base flow temperature gradient given 
in equation (5). In this analysis, we prefer to present the 
results in terms of the critical internal Rayleigh number, 
Ra,, and the Biot numbers based on the thermal 
conductivity of the fluid (i.e. Hi = hid/k, i = 1,2) in 
order to facilitate the comparison of the results with 
those in which the wall effects were neglected [3%5]. 

The convergence. The convergence of the solution 
for the analysis of the longitudinal rolls, for which the 
Chandrasekhar method was used, was found to be 
very fast; the difference between the third and the 
fourth approximations was less than 0.5%. The calcu- 
lations performed for the transverse rolls are for Pr = 
0.72 for all possible values of the input parameters Hi, 
IC,,,~ and si, with i = 1,2. The results of calculations 
performed for the transverse rolls using 16 x 16 and 12 
x 12 determinants was less than 0.3% for Pr = 0.72. 

The transition angle. Calculations are performed for 
Pr = 0.72 to investigate the effects of the Biot number, 
the conductivity ratio and the thickness ratio for the 
lower and upper walls on the transition angle 6,, that is 
the angle at which cross over takes place from the 
longitudinal to transverse rolls. Table 1 shows the 
variation of the transition angle 6, with identical 
values of the Biot numbers H, = Hz, the conductivity 
ratioKwl = IC,~ and the wall thickness ratio s1 = s2 for 
the lower and upper walls for Pr = 0.72. For all the 
cases shown in this table, the transition angle, 6,, 
increases with decreasing value of the wall con- 
ductivity ratio. The value of the transition angle 6, = 
71.6 for thecaseofH, = Hz -+ ~1 and K,,,~ = Kw2 2 

100 is in good agreement with that reported by 
Korpela [18] for the BCnard type problem in which the 
two surfaces of the fluid layer are kept at constant 
temperatures. 

The variation of the wall thickness ratio, s1 = s2, 
appears to have an intriguing effect on the transition 
angle, 6,, depending on the values of H 1 = H, and Kwl 
= K,2. For example, for H, = Hz + x, the transition 
angle, 6,, increases as the conductivity ratio decreases 
or the wall thickness ratio increases. On the other hand 
for HI = Hz = 0.01, the transition angle, a,,, increases 
as the conductivity ratio decreases or the wall thick- 
ness ratio decreases, excluding the case K,,,~ = K,~ = 

0.01. For the case of H, = Hz = 1, however, the 
transition angle may increase or decrease with the wall 
thickness ratio depending on the value of K,,,~ = Kw2. 

For example, the transition angle increases with 
increasing wall thickness (sl = s2) for Kwl = K,2 = 

0.01, whereas it decreases with increasing s1 = s2 for 

%+I = J&z = 100. The following discussion of the 
stability criteria will be helpful in the explanation of 
this phenomenon. 
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Table 1. The effects of I-f. I(,,, and s on the transition angle 6, 
in degrees, measured from the horizontal, for Pr = 0.72 

H, = H, -+ Y 

K?VI = K,j 0.0 I 0.1 1 >, 
__-I-.-_~ _._ -... 

0.01 78.2 80.97 81.86 81.98 
0.1 73.73 78.18 80.57 80.70 
1 71.86 73.68 76.37 76.40 

10 71.60 71.85 72.45 72.45 
r100 71.60 71.60 71.60 71.60 

H, = H2 = 1 

&I = Kwz 0.01 0.1 1 2 ? 
._____ 

0.01 79.1 80.92 81.88 81.YY 
0.1 78.3 79.00 80.50 80.70 
1 78.17 77.75 76.54 76.40 

10 77.60 74.83 72.57 72.45 
100 74.80 72.16 71.70 71.60 

. . 

If, = H, = 0.01 

.A( = ‘2 

KWI = ii,> 0.01 0.1 1 >2 
.___. _. _ 

0.01 81.92 81.93 81.96 Xl.% 
0.1 81.89 81.75 X0.88 80.69 
1 81.75 80.47 76.75 76.40 

10 80.46 75.36 72.58 72.45 
100 75.33 72.17 71.70 71.70 

-..-_ “. ._.. ..~ ~.~ __ ._. 

The stability criteria fbr iongitz~i~i~a~ rolls with both 
walls rigid 

Figure 2 shows the effects of the wall thickness ratios 

s1 and s2 of the lower and upper wails respectively on 
the critical internal ~a~le~gh number. Ra,, for various 

values of identical conductivity ratios (i.e. ti,l = tiwz) 
and for the case of H, = H, --( *L (i.e. the temperature 

at the outer surface of each wall is constant). This 
figure shows that, as the wall thicknesses are decreased 
or the wall conductivities are increased the flow is 
more stable. This can be explained qualitatively as 
follows : increasing the wall thickness or decreasing the 

wall conductivity reduces the heat dissipation through 
the walls. As a result the amplitude of the perturbed 
temperature in the fluid is amplified which in turn 
destabilizes the fluid. A more quantitative explanation 
of this matter can be given by referring to the boundary 
conditions given by equations (7a) and (7b) and the 
definition of the parameter ci given by equation (7~). In 
these boundary conditions the parameter ei appears as 
an effective Biot number. Then, as ti is increased the 
heat dissipation through the walls is increased and as a 
result the stability is improved. For the case of H,i -3 
X, equation (7~) reduces to 

This result implies that, increasing tiwi increases &, 
hence improves the stability. On the other hand, 
increasing Si decreases &, which in turn decreases the 
stability. 

The lumped parameter analysis has also been used 
in the literature [3--S] to investigate the effects of walls 
on the stability criteria. In order to establish the range 
of validity of the lumped parameter analysis. WC‘ 
lumped the thermal resistances of the walls and the 
outside surrounding according to the formulae 

and for these values of H; and Hi computed the 

critical internal Rayleigh number from corresponding 

analysis of the longitudinal rolls in reference [S). The 
Ru, obtained in this manner are compared with those 

in Fig. 2 for H, = HI -+ Y. The results of this 
comparison are listed in Table 2 for few cases. This 
table shows the deviation between the two critical 

Rayleigh numbers increases with the increasing values 

of the conductivity and wall thickness ratios con- 
sidered in this example. 

As a result, the lumped system can be used as a good 
criteria to evaluate the critical Rayleigh number, Rtr,, 

only for small wall conductivity ratios and small wafl 
thickness ratios. 

We also note from Fig. 2 that the limiting case, with 
K u,l = K,,,~ --+ -A, for any values of the wail thicknesses 
corresponds to the Bbnard case, Ru, . cos is = 1708. 

Figures 3(a) and (b) have been prepared to show the 
variations of the critical internal Rayleigh number, 

Ra,. with the Biot numbers H, and H, for different 
values of identical wall thickness ratios. The t&t of 

these is for K,~ = K,~ = 1 and the second for K,~ = 

kv2 = 10 and 100. It is apparent from both of these 
figures that increasing Biot numbers have a stabilizing 

effect on the fluid as previously discussed in references 
[3- 51. However. it is not so easy to draw a general 

conclusion on the effects of the wall thickness ratios S, 
and s2 on the stability criteria merely by the inspection 

of the results presented in this figure. Therefore, we 
refer to the definition of ti given by equation (7~) and 
examine the following three cases 

(a) H,, (or HJ -t 0: equation (7~) reduces to 

si = K,~c+ tanh (u,,\~). 12Xat 

The, ci increases with as K,~ or .si increases, as a result, 

the onset of instability is delayed as :+; or K,~ is 
increased. 

(b) H,., = a,: equation (7~) becomes 

Ci = K,&- (28b) 

This result means that & increases with ti,;, but the 
wall thickness has no effect on the stability criteria for 

H,, = u2. 

(c) H,,+ -+ x : the wall thickness has a stabilizing 

effect as shown in equation (26). 
To illustrate the range of validity of the lumped 
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= I a LARGER 
--.A._.-.. 

--w--d-- 

= 0.01 

_ KW,=~2=0.01 

FIG. 2. Effects of the lower and upper wall thickness ratios s, and sa, conductivity ratios K,~ and K,~ on the 
critical internal Rayleigh number Ra, 

Table 2. Comparison between Ra, computed from the present analysis and (Rar)lump for the lumped 
system 

s, = s2 

&I = ‘Lz - - 0.1 Kwl = K,2 = 1 

Rd, UWIUmp go, UWIU,P 

&I = ‘Lz = 10 

Ra, WcLp 

0.01 1524 1511 1693 1681 1707 1705 
0.01 1113 1100 1528 1511 1705 1681 
1 891 845 1282 1100 1640 1511 

10 879 858 1278 845 1639 1100 

Table 3. The effects of the Biot numbers HI and H, on the differences between Ra, computed from the present analysis and 
(Wtump for various identical values of wall conductivity ratios and wall thickness ratios 

‘%I = Kw2 - - 0.1 Kwl = K,2 = 1 K,, = Kw2 = 10 

s,=s,=O.l s1 =sz = 1 s,=s,=O.l s,=s,=l s, = s2 = 0.1 sr = s2 = 1 

HI = Hz & Vhhump Ra, Wchump Ra, UWLump Ra, (RaJlump Ra, (RaJlump Ra, (Rac),ump 

100 1191 1100 900 845 1566 1500 1309 1100 1678 1660 1647 
lb33 

1560 
1 997 895 835 1154 1090 1266 997 1423 1100 1630 1080 
0.01 780 759 861 765 900 759 1246 759 1374 809 1629 760 

parameter analysis of the wall effects on the stability of the walls are about of the same order of magnitude 
criteria with the walls subjected to convective boun- or larger than those for the fluid, the results based on 
dary conditions as considered in references [3-51, we the lumped parameter analysis are unrealistic. There- 
present in Table 3 a comparison of the critical internal fore, the validity of such results should be restricted to 
Rayleigh number, Racr obtained from the present small thickness ratios of the walls (i.e. ti << d, i = 1,2) 
analysis and that determined by the lumped parameter with wall conductivities of the same order of magni- 
analysis, (Rc&,,~ The results presented in this table tude or lower than the fluid conductivity. 
indicate that when both the conductivity and thickness 
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Be’nord Problem 

FIN;. 3. Effects of wall parameters (sr, s2. k,r. K,,*) and H,, H, on Ra,. 
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APPER’DIX 

Principle ofex~hange of stabilities 
It can be proved from the eigenvalue system defined by 

equations (I), (3) and (4) that, the instability sets in as 
stationary cells and not as overstability. The procedure for 
such an analysis can be outlined by following the pattern 
established in reference [S]. That is, equations (la), (lb) and 
(3a) and (3b) for cti = a, are multiplied by the complex 
conjugates of it*, B*, 0: and @$, respectively. Integrating over 
the entire range of the y-variable, and after some partial 

integrations and manipulations the following variational 
problem is obtained 

(- D@a$Ra, . cos S 

P+ i 
f 

” [r>t?~D@ + (a: + EPry,)B$~] dy 
i=O i 

zz 

s 

' [D%*D%* + (2a: +c)Do*DC* + a:(a$+c)o*v?] dy 
0 

(29) 

where 

@* = r~~~~~~e~(-s~~(-s~) 

+ i%&@f(l + s&(1 -I- &I (30) 
and - denotes the complex conjugate, with 

t?: = e*, yi = 1 for i=O 

bi = 0, ci = 1 for i=O 

bi = -sl, ci = 0 for i = 1 

bi= 1, ci = 1 f s2 for i = 2. 

‘Now, we let c = c, + ic,,, and equate the imaginary parts on 
each side of equation (11); the resulting expression implies 
that for ( - DO) Re, . cos 6 ? 0, the imaginary part oft, et,,, = 
0. This conclusion establishes the principle of exchange of 
stabilities. NameIy, if the fluid is heated from below, the 
marginai state of instabiIity for this system is characterized by 
c = 0 for inclinations from the horizontal such that 6 c 90”. 

EFFETS DE LA RESISTANCE THERMIQUE PARIETALE SIJR LA STABILITE DUN 
REGIME DE CONDUCTION DANS UNE FENTE ETROITE ET INCLINEE 

R&snmi+-On itudie anaiytiquement les effets de la resistance thermique parietale sur ~ap~rition du 
mouvement de convection cellulaire dans un fluide B l’interieur dune fente ineWe, ayant un tres grand 
allongement et soumise a des conditions aux limites convectives; des calculs numeriques sont effect&s dans 
le cas Pr = 0,72. Pour etablir le domaine de validite dune analyse deja utilist!e antirieurement pour les effets 
des parois sur la stabilid, les resultats presents sont compares avec ceux obtenus par cette analyse. On Ltudie 
les effets des parois sur l’analyse de transition entre les rouleaux longitudinaux et les rouleaux transversaux. 

EINFLUSSE DES THERMISCHEN WANDWIDERSTANDS AUF DIE 
STABILIT~T DES ZUSTANDES DER REINEN W~RMELEITUNG 

IN EINEM SCHRAGEN SCHMALEN SPALT 

Zusammenfassung-Die Einfliiss des thermischen Wandwiderstands auf das Einsetzen der zellenfiirmigen 
Konvektionsbewegung in einem Fluid, das sich in einem schriigen Spalt mit grol3em Seitenverhlltnis 
befindet und konvektiven Randbedingungen unterworfen ist, werden beztiglich der LHngs- und Querwalzen 
analytisch und numerisch fiir den Fall Pr = 0,72 untersucht. Urn den Giihigkeitsbereich der Methode der 
konzentrierten Parameter festzustellen, die in einigen vorangegangenen Arbeiten iiber die Einfliisse der 
W&de auf die Stabilit~tsk~terien verwendet wurde, werden die vorliegenden Ergebnisse mit jenen 
verghchen, die mit der Methode der konzentrierten Parameter erhalten wurden. Es wird gezeigt, daI3 die auf 
der Methode der konzentrierten Parameter basierenden Ergebnisse unrealistisch sind, wenn die Wiirmeleit- 
fahigkeit und die Dicke der Wiinde etwa in der gleichen GroBenordnung liegen oder gr6Ber als die des 
Fluids sind. Die Einfliisse der Wande aufden Ubergangswinkel fur den Umschlag von Larrgs- zu Querwalzen 

wurden untersucht. 

B~~~H~~ TEPM~~ECKOrO COH~T~B~EHH~ CTEHKH HA YCTO~~~BO~b 
PEJKHMA TEI-lJIOiIPOBO~HOCTW B HAKJIOHHOI? Y3KOR IQEJIH 

AHHOTaUIIR - AHaneTaHecKs HCCJlenyeTCs BnUIlHWe TepMHYeCKOrO COIlpOTHBneHHK CTeHKH Ha 603HHKHO- 
BeHHe WWiCTOii KOHBeKURH B TAllKOCTB,3aKJllOYeHHO~ BHyTp&i HaKJlOHHOti HJeJleBOii nOJlOCTH C OYeHb 
6OnbmHM OTHOmeHReM CTOpOH npH yCJlOBnsX, KOraa WMetOT MeCTO llpO~OJlbHble W nOnepeHHbIe BaJlbI. 
RbmonHeHM ‘IHCJIeHHbre pacVeTbt anr Pr = 0.72. &m ycTaHoBneHar ofinacrw npeMeHHMocTn ananrraa 
HZ? OCHOBe paCCMOT&X2HEiSl ITBJEHIiii KaK CNCTeMM CO COC~~OTO~eHU~M~ UapaMeTpaM~, ~~~~e~~B- 

Luei-ocs B prne partee npoBe;ieHHbzx H~c~e~oBaH~~ mfsmim CTeHoK Ha rpaTepuw ~CTOR~HB~CTH. 

npOBeJleH0 CpBHeHNe pe3yJlbTaTOB 3TOrO aHaJln3a C nOJlyHeHHfiiMH B HaCTOsmeii pagore. nOKa3aH0, 
VT0 eCJIN nOpBaOK BeJlHYHH TenJlOnpOBOnHOCTA H TOJlmHHbI CTeHOK TOT ?Ke, ‘(TO Ii TennOrUlOBOn- 
HOCTH 13 TOJIIHnHbI CJlOs XHJIKOCTH, pe3yJlbTaTbt aHam3a Ha OCHOBe oGo6weHHoro napaMeTpa 

OKa3blBWOTCI HeBepHbIMlc. MccnenyeTcn Bnmme CTeHOK Ha yron HaKnOHa semi, np5i ~0T0p0~ 

npOHCXOAnT nepexon OT npononbHbIx K nonepwHbIM Banahi. 


