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Abstract—The effects of thermal wall resistance on the onset of cellular convection motion in a fluid confined
inside an inclined slot having a very large aspect ratio and subjected to convective boundary conditions are
investigated analytically for the longitudinal and transverse rolls, and numerical calculations are performed
for the case of Pr = 0.72. In order to establish the range of validity of the lumped parameter analysis used in
some of the previous work on the effects of walls on stability criteria, the present results are compared with
those obtained by the lumped parameter analysis. It is shown that, when the thermal conductivity and the
thickness of the walls are about of the same order of magnitude or larger than those for the fluid, the results
based on the lumped parameter analysis are unrealistic. The effects of walls on the transition angle for the
cross over from the longitudinal to transverse rolls are investigated.
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NOMENCLATURE

dimensionless wave number;

thickness of the fluid layer;
gravitational acceleration;

external Grashof number, yg(T,, —
T2)d3/v?;

heat transfer coefficients;

Biot numbers based on fluid conduc-
tivity, H = hgd/k;

Biot numbers based on wall conducti-
vities, H,,; = hd/k;;

thermal conductivity of fluid ;

thermal conductivity of the lower and
upper wall;

height of slot;

Prandtl number, v/o;

external Rayleigh number, yg(T,, —
To2)d*/av;

internal Rayleigh number, yg{ T(0) —
T(d)]d3/av;

lower and upper wall thickness ratios,
t/d;

lower and upper wall thicknesses ;
dimensionless time, vt/d?;

fluid temperature;

environment temperatures at the lower
and upper walls respectively;
dimensionless perturbed velocity com-
ponent in y-direction;
characteristic  velocity,
T.,2)d? - cos d/v;
Cartesian coordinates with y measured
normal to the walls;

= (X, Y)/d.
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Subscripts
w L]
1,2,

thermal diffusivity of the fluid;
thermal diffusivities of lower and upper
walls, respectively;

coefficient of thermal expansion for
fluid ;

parameters defined as, a/o;;

angle measured from horizontal;
transition angle;

dimensionless perturbed temperatures;
lower and upper walls conductivity ra-

tios, k;/k;

kinematic viscosity;

dimensionless  perturbed  stream
function;

time.

mean quantities;
refers to perturbed quantity.

refers to outside environment
lower and upper wall respectively.

INTRODUCTION

THIS PAPER is concerned with the effects of the thermal
resistances of the walls on the stability of natural flow
in the conduction regime inside an inclined slot. In an
earlier work on this subject, Ostroumov [1] evaluated
the critical Rayleigh number for a viscous fluid heated
from below inside an infinitely long circular cylinder
with an infinitely thick wall in terms of the ratio of the
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wall thermal conductivity to the fluid conductivity.
The same problem was studied later by Slavnov [2] for
the case of finite wall thickness. Other investigators
[3-5] included the effects of convective boundary
conditions but neglected the thermal resistance of the
walls. The effect of wall thermal resistance on stability
for the Bénard problem was studied by Hurle, Jack-
man and Pike [6] by assuming that the fluid was
bounded by two solid walls of infinite extent and
having identical finite thermal conductivity. Later on,
Nield [7] considered a similar problem, but only for
the case when the fluid was bounded below by a rigid
wall of infinite conductivity and above by a solid wall
of finite conductivity and finite thickness.

The stability of natural flow in a narrow vertical or
inclined slot having walls kept at different isothermal
temperatures has been examined [8-19] for all
Prandtl numbers. These results confirm that instability
occurs as either two-dimensional longitudinal rolls
which are dominant in the range of angles of in-
clination 0 < & < §,, or as two-dimensional transverse
rolls in the range 6, < & < 90, where d, is the
transition angle (i.e. for transition from longitudinal to
transverse rolls) measured from the horizontal. When
transverse rolls have priority of occurrence over
longitudinal rolls, instability sets in as stationary cells
for Pr < 12.7 and in the form of travelling waves for Pr
> 12.7.

It is apparent from the aforementioned survey of
literature that the effects of the conductivity and the
thickness of both walls on the stability of a fluid in an
inclined slender slot, subjected to convective boundary
conditions, have not yet been studied.

ANALYSIS

Consider a layer of fluid of thickness d, kinematic
viscosity v, thermal conductivity k, thermal diffusivity
a, and coefficient of thermal expansion y, contained in
a narrow inclined slot. The lower surface of the fluid
layer is bounded by a wall of finite thickness ¢, and
conductivity k,, while the upper surface is bounded by
a solid wall of thickness 1, and conductivity k,. These
walls are subjected to convective boundary conditions
at their outer surfaces, such that, b, is the heat transfer
coefficient at the lower surface and h, is the heat
transfer coefficient at the upper one. If the environment
temperatures T, , and T, ,. illustrated in Fig. 1, are
such that T, > T ,,,a unicellular convective motion
sets up so that fluid near the hot plate rises upwards
and that near the cold plate flows downwards. If the
temperature difference, T ,, T,, is gradually
increased, the initial laminar flow between the plates
breaks up and a secondary flow sets up in the form of
two dimensional multicellular convection. To in-
vestigate the conditions for the initiation of such an
instability in the flow field, the linear perturbation
theory is applied to the governing equations of motion
and energy in the Boussinesq approximation. After
eliminating the pressure, the resulting differential
equations governing the formation of the longitudinal
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and transverse rolls are given in the dimensionless
form.

Equations for the longitudinal rolls

&
{5 —(D? ~ a%)](f)z —adt* = —alf* cos $

O<y<l (la)
¢ , -
[Pr P (D* ~ a%)"(?* + Ra,Doc* = 0
O<y<i (Ib
Equations for the transverse rolis
P
|- 0= ab |0~ e
+ ia,Gr,sin 8[U (D* — a}) — D*U Jo*
= —(a}f* cos 5 + ia, DO* sin 3) {2a)
a
{Prﬁ; - (,l)2 — ai")]@*
+iayRa, U, 6%sin § + Ra,DBr* = 0. (2b)
Equations for the lower and upper walls
{Pr«;l (;z ~(D* — af)](}}“ =0 O0<y<—g (3a)

[Pryz (:r —(D* ~ a?)} 1=0 l<y<i+s, (30
where y; = a/o, i = 1.2, is the diffusivity ratio, a, is the
wave number for the transverse rolls and a, for the
longitudinal rolls in the x- and z-directions respec-
tvely. It is to be noted that the Prandtl number, Pr.
appearing in the equations for the walls results from
the fact that the dimensionless time is defined as ¢ =
tv/d*, where t is the dimensional time. The boundary
conditions for the above equations are taken, for the
case of rigid walls as

= Dp* =0 at y=0,1 {da}
6% = 0%, DO* =k, DO* at y=0 (4b)
0* =0,, DO* =k,,D0% at y=1 {4c)
DOf — H,,0F=0 at y= —§, (4d)
DY + H .05 =0 at y =14+ §,(4e}

where D = ¢/8y; v* is the dimensionless component of
the perturbed velocity normal to the plates; 8*, 6%, and
0% are the perturbed temperatures in the fluid, and in
the lower and upper plates, respectively; and x and y
are the dimensionless coordinates parallel to and
normal to the walls. In addition, S, and S, are the
dimensionless thicknesses of the lower and upper
walls; Gr, and Ra, are the external Grashof and
Rayleigh numbers which are defined on the basis of the
difference between the temperatures T, and 7', ; of
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the environments. H,,; and H,, are the Biot numbers
for the lower and upper walls based on the con-
ductivity of the walls respectively; x,,; and k,,, are the
conductivity ratios of the lower and upper plates
respectively; y, and 7y, are the diffusivity ratios of the
lower and upper plates and 4 is the angle of inclination
measured from horizontal. In equations (3), the sub-
script i = 1 stands for transverse waves and i = 2 for
the longitudinal waves. The quantities U, and D3 refer
to the dimensionless base flow velocity component in
the x-direction and the base flow temperature re-
spectively. They are determined from the base flow
analysis in the conduction regime as
0y == y(1 - »)1 - 2);
0= 12y( v —=2y);

1

)
T [ L=
H, k., H, K,

where H, = hd/k, i =1,2.

Di= —

The analysis for longitudinal rolls

It can be shown by the principle of exchange of
stabilities that, in the case of longitudinal waves
defined by equations (1), (3) and (4), the instability sets
in as stationary cells, not as overstability. This matter
is discussed in the Appendix. When the longitudinal
rolls have priority of occurrence over transverse rolls,
the free convection occurs in the form of stationary
rolls and one can set ¢/0t = 0 in the analysis of
stability.

The solutions of equations (3) subject to the con-
ditions (4d) and (4e) are taken as

0% = A[a, coshay(s; + y)
+ H,, sinha,(s; +y)] (62)
05 = Bfa, cosha,(1 + s, — )
+ H,,sinha,(1 + s, —y)] (6b)

where 4 and B are constants.
Conditions (4b) with equation (6a) give

GL*DO* = xwlalfDB}‘ =¢,
or

Do* —£,60*=0 at y=0. (7a)
Similarly, the conditions at y = 1 is

DO* + £,6 =0 at y=1 (7b)
where

H,; + a, tanh a,s;

&= Kty [m] i=1,2. (7c)

Now, by setting 6/dt = 0, equations (1) reduce to
(D* — a?)*v* = a26* cos S (8a)

(D* — a2)@* = Ra,DOv* (8b)

and the boundary conditions (4d) and (7a,b), for the
case of ‘two rigid walls’ are written as

v*=Dv*=DO0* —¢,0*=0 at y=0
v*=Dv*=DO* + &,0*=0 at y=1

(9a)
(9b)

For the case of ‘lower wall rigid and upper one free’,
which is applicable for the horizontal position, the
above differential equations (8) and the boundary
conditions (9a) at the lower rigid wall are still applic-
able; but the hydrodynamic and thermal boundary
conditions at the upper surface will be replaced by

v*=D¥*=DO* + H0*=0 at y=1. ()

The solution for longitudinal rolls. The above eigen-
value problem for the longitudinal rolls is solved by
the application of the Chadrasekhar Method for the
cases of ‘two rigid walls’ and ‘lower wall rigid, upper
surface free’, because this method converges very fast
and gives quite accurate results in few approximations
[20] with this type of problem. To perform the
analysis, the function v*(y) is represented in a series of
orthogonal functions @, in the form

()= Y AuPn(y) (10a)

m=1
where, the orthogonal function ®,,(y) are taken as [20]

cosha,y — cosa,,y

D,.(y) =
cosha, — cosa,,

sinh a,,,y — sin «
JEAEY TS 0wy
sinh a,, — sin a,,
The auxiliary eigenvalues a,s are the roots of the
transcendental equation

coshacosa =1 (both walls rigid)  (11a)
cotha —cota =0
(lower wall rigid, upper one free). (11b)

The above solution (10) for v* is introduced into
equation (8b), and the resulting equation is solved to
determine 6* analytically. The approximate solutions
thus obtained for v* and 8* are then introduced into

Fig. 1. Cross-section of the physical problem.
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equation (8a) and the orthogonality conditions of the
®, functions are utilized to obtain a set of infinite
algebraic homogencous equations. By truncating these
equations after N terms, the resultant set yieldsan N x
N secular determinant for the determination of the
external Rayleigh number Ra,.

ety + a3(Ra, €08 8)b il =0 (12)

where

I
P ( (D? — a3, ()P, (y)dy  (13a)
Jo

~

B =

mn

DO 60,(y) @ v)dy.

(13b)
Jo

Here in equations (13) the two integrals are performed
analytically. Once these integrals are known, the
external Rayleigh number, Ra,, is computed by satisfy-
ing equation (12) for different values of the wave
number ‘a,” with each fixed system of input parameters
‘Hy, H;, k.. K.z, S;, S, The minimum of these
Rayleigh numbers for each system of input parameters
establishes the critical Rayleigh number, marking the
conditions for the onset of instability associated with
the occurrence of longitudinal vortex rolls.

The analysis for transverse rolls

The stability problem associated with the transverse
rolis are governed by the differential equations (2) and
(3) and the boundary conditions (4). We note that the
equations (2) are complex, as a result their solutions v*
and 0* are complex functions. The wall equations (3)
and their boundary conditions (4d,e) at the outer
boundaries are real, but at the inner boundaries the
boundary conditions (4b,c) are coupled to the fluid
temperature 0*, which is complex. Therefore, the
solution for the wall temperatures is expected to be
complex.

We assume a disturbance in the form

[y . 8% 0] = [W(x), 0(y)]e”

and introduce this result into equations (2)-(4), and
follow a procedure described previously. The thermal
boundary conditions at the interior surfaces become

(14)

DOF 0 =0 at y=0,1 {15a)
where
H,; + btanhbs;
jom | S TOWRRDS o (15b)
' H,;tanh bs; + b
and

b = [a} + (:Prc)?]1* em?

n=tan ' ( ’JP'(,>
ca )

Here, the parameter ¢ is in general a complex number,
therefore the coefficients /; (i = 1,2) are complex too.
For the case when the stability sets in as stationary
cells, we have ¢ = 0. Then the expression for 4
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becomes real and similar to the parameter &; which
previously appeared in equation {7c¢) for the longitu-
dinal rolls.

It is apparent from equation (15b) that the wall
parameters k,; and s; affect the coefficients /; which in
turn affect the onset of stability. For the limiting case,
K,i — « (or #; = o), that is when both boundaries are
perfectly conducting, the analysis reduces to the one
discussed in references [8-19] in which the transition
Prandtl number (i.e. the value of the Prandt]l number at
which change over from the stationary cells to the
travelling waves) has the value Pr, = 12.7. For the
other limiting case, k,; — 0 (or ., -» 0), which
corresponds to the nonconducting walls, the transition
Prandtl number has the value Pr, = 095 [21]
Therefore, for the intermediate cases of finite wall
conductivity and finite wall thickness, the transition
Prandtl number should lie between the above two
limits, thatis,0.95 < Pr, < 12.7. No experimental data
are available for the value of the transition Prandtl
number for the cases when the wall conductivities are
of the same order of magnitude ax the fluid con-
ductivity and with convective boundary conditions.
Therefore, based on the arguments given above, so
long as Pr < 0.95, it is expected that the transition
from the conduction regime to the multicellular re-
gime, for the case of transverse waves should occur in
the form of stationary convective cells.

Therefore, by restricting the present analysis for
fluids having Prandtl number Pr < .95, the equations
governing the transverse waves are obtained from
equations (2)-(3), by setting ¢/¢t == O und replacing the
velocity ¢* by the stream function ¢* (ie. *
it*/a,). We obtain

(D — a, Y™ —
x sin 3[UAD? — aly* — DU w*|

ia,Gr,

= [ia, 0* cos & — DO* sin &) (16a)

(D* — a})0* — iay Ra,[U 0% siné — DOY*] =0
{16b)

Y* = Dy* = DO* i =0 at y =01 (17)

where, the real parameter ., is obtained from equation
(15b) by setting ¢ = 0.

)X_Kuvi 1[1.-.]“'."+ulwnhuxsij‘ {18}
H,;tanhas; + a,

The solution for the transverse rolls. The above
system of equations for the transverse rolls is solved by
the Galerkin method which has been applied success-
fully in the problems of hydrodynamic stability [11.
17-19]. In this method, the functions ¥* and 6* are
represented in the form of orthogonal infinite series.
The orthogonal functions are so chosen as to satisfy
the boundary conditions for the problem. These

expansions are taken in the form [20]

lll* - Z Am(Danfl(y) + i Z qu)lm(y) (193)
1

m=1 s
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6* = Z Cm62n{y)+l Z Dm02m—1(y)' (19b)

m=1 m=1
The orthogonal functions ®,, and the eigenvalues
associated with them are given by equations (10b) and
(11b) respectively. The orthogonal functions 8,,(y) and
the eigenvalues associated with them are taken as

em(y) = ﬁm cos ﬁmy + }"1 Sin ﬁmy (203)
_BOL+ D)
tan ﬁ = m (20b)

The coefficients A4,, B,, C, and D, appearing in
equations (19) are unknown constants. Substituting
the expansions given by equations (19) into equations
(16), equating the real and imaginary parts on both
sides of each equation, and orthogonalizing, one
obtains an infinite set of linear algebraic homogeneous
equations. If these expansions are truncated after N
terms the resultant set yields 4N equations for the 4N
unknowns. The nontrivial solution of this system is
characterized by the condition of the vanishing of the
determinant which is written in the matrix form as

|Hpl =0 for n=1,2,3,... @1)

where the elements H,,, are real matrices of order 4N
x 4N resulting from the orthogonalization.

We investigated the effects of various system para-
meters, such as H,, k,,;, 8;, i = 1 or 2, on the critical
Grashof number for the transverse rolls for Pr = 0.72.
The value of Gr, = 8000 at the vertical position for k,;
= oo changes only slightly with these parameters and
the inclination in the range where the transverse rolls
were dominant [21].

RESULTS AND DISCUSSION

We now present the effects of the wall thickness
ratios s, and s,, the wall conductivity ratios «,,, and k,,,
and the Biot numbers H,,, and H,, for the lower and
upper surfaces respectively, on the initiation of con-
vective motion characterized by the critical internal
Rayleigh number Ra,. The internal Rayleigh number,
Ra s defined on the basis of the difference between the
base flow temperatures at the inner surfaces as

9l TO) - T@)&
N ay

Ra (22)
where T(0) and T(d) are the base flow temperatures at
the inner surfaces of the lower and upper plates
respectively. The external Rayleigh number, Ra,, is
defined on the basis of the difference between the
outside temperatures, T, — T, as

_ 19Ty = To2)d?
av )

Ra (23)

(4

Then the relation between Ra and Ra, is given by

Ra = [M] . Rae

Taol - T302 (24)
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where

T(0) - T(d) _ (DB
T, —T

ol 2

Here, (D) is the base flow temperature gradient given
inequation (5). In this analysis, we prefer to present the
results in terms of the critical internal Rayleigh number,
Ra,, and the Biot numbers based on the thermal
conductivity of the fluid (i.e. H; = hd/k,i = 1,2) in
order to facilitate the comparison of the results with
those in which the wall effects were neglected [3-5].

The convergence. The convergence of the solution
for the analysis of the longitudinal rolls, for which the
Chandrasekhar method was used, was found to be
very fast; the difference between the third and the
fourth approximations was less than 0.5%,. The calcu-
lations performed for the transverse rolls are for Pr =
0.72 for all possible values of the input parameters H,,
K,; and s;, with i = 1,2. The results of calculations
performed for the transverse rolls using 16 x 16and 12
x 12 determinants was less than 0.3%, for Pr = 0.72.

The transition angle. Calculations are performed for
Pr = 0.72 to investigate the effects of the Biot number,
the conductivity ratio and the thickness ratio for the
lower and upper walls on the transition angle &,, that is
the angle at which cross over takes place from the
longitudinal to transverse rolls. Table 1 shows the
variation of the transition angle J, with identical
values of the Biot numbers H, = H,, the conductivity
ratiok,,; = K, and the wall thickness ratio s; = s, for
the lower and upper walls for Pr = 0.72. For all the
cases shown in this table, the transition angle, d,,
increases with decreasing value of the wall con-
ductivity ratio. The value of the transition angle §, =
71.6 for the case of H, = H, - wwand k,,;, = K,,, >
100 is in good agreement with that reported by
Korpela [ 18] for the Bénard type problem in which the
two surfaces of the fluid layer are kept at constant
temperatures.

The variation of the wall thickness ratio, s; = s,,
appears to have an intriguing effect on the transition
angle, 3,, depending on the values of H, = H, and k,,,
= K,,;. For example, for H, = H, — =, the transition
angle, 8y, increases as the conductivity ratio decreases
or the wall thickness ratio increases. On the other hand
for Hy = H, = 0.01, the transition angle, §,, increases
as the conductivity ratio decreases or the wall thick-
ness ratio decreases, excluding the case k,,; = k,,, =
0.01. For the case of H, = H, = 1, however, the
transition angle may increase or decrease with the wall
thickness ratio depending on the value of x,,; = x,,,.
For example, the transition angle increases with
increasing wall thickness (s, = s,) for x,,;, = k,,, =
0.01, whereas it decreases with increasing s, = s, for
K,1 = K., = 100. The following discussion of the
stability criteria will be helpful in the explanation of
this phenomenon.
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Table |. The effects of H, x,, and s on the transition angle §,
in degrees, measured from the horizontal, for Pr = 0.72

H =H; - v
Sy =X,
K1 = Ky 0.01 0.1 1 >2
0.01 78.2 80.97 81.86 81.98
0.1 73.73 78.18 80.57 80.70
1 71.86 73.68 76.37 76.40
10 71.60 71.85 72.45 72.45
=100 71.60 71.60 71.60 71.60
Hy=H,=1
Sy =5,

Ky = Ky 0.01 0.1 1 =2
0.01 79.1 80.92 81.88 81.98
0.1 78.3 79.00 80.50 80.70
1 78.17 77.75 76.54 76.40

10 77.60 74.83 72.57 7245
100 74.80 72.16 7170 71.60
H{=H, =001
S8y

Ky = Ky 0.01 0.1 i >2
0.01 81.92 81.93 81.96 8198
0.1 81.89 81.75 80.88 80.69
1 81.75 80.47 76.75 76.40

10 80.46 75.36 72.58 7245
100 75.33

7217 71.70 71.70

The stability criteria for longitudinal rolls with both
walls rigid

Figure 2 shows the effects of the wall thickness ratios
5y and s, of the Jower and upper walls respectively on
the critical internal Rayleigh number, Ra,, for various
values of identical conductivity ratios (i.e. k,,; = K,2)
and for the case of H, = H, — = (i.e. the temperature
at the outer surface of each wall is constant). This
figure shows that, as the wall thicknesses are decreased
or the wall conductivities are increased the flow is
more stable. This can be explained qualitatively as
follows : increasing the wall thickness or decreasing the
wall conductivity reduces the heat dissipation through
the walls. As a result the amplitude of the perturbed
temperature in the fluid is amplified which in turn
destabilizes the fluid. A more quantitative explanation
of this matter can be given by referring to the boundary
conditions given by equations (7a) and (7b) and the
definition of the parameter £; given by equation (7c). In
these boundary conditions the parameter £; appears as
an effective Biot number. Then, as &, is increased the
heat dissipation through the walls is increased and as a
result the stability is improved. For the case of H,; —
oz, equation (7¢) reduces to

_ Kty

= - S 26)
tanh a,s; (

re

i
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This result implies that, increasing «,,; increases ¢,
hence improves the stability. On the other hand,
increasing s; decreases &, which in turn decreases the
stability.

The lumped parameter analysis has also been used
in the literature [ 3-5] to investigate the effects of walls
on the stability criteria. In order to establish the range
of validity of the lumped parameter analysis, we
lumped the thermal resistances of the walls and the
outside surrounding according to the formulae

2N

1 s 1
HY = j [ l_. HY =1 —- + E
VUUUH ke Y H, ks

and for these values of H; and H; computed the
critical internal Rayleigh number from corresponding
analysis of the longitudinal rolls in reference [5]. The
Ra, obtained in this manner are compared with those
in Fig. 2 for H, = H, — . The results of this
comparison are listed in Table 2 for few cases. This
table shows the deviation between the two critical
Rayleigh numbers increases with the increasing values
of the conductivity and wall thickness ratios con-
sidered in this example.

As aresult, the lumped system can be used as a good
criteria to evaluate the critical Rayleigh number, Ra,.
only for small wall conductivity ratios and small wall
thickness ratios.

We also note from Fig. 2 that the limiting case, with
Kwi = K, — 1, for any values of the wall thicknesses
corresponds to the Bénard case, Ra, -cosd = 1708.

Figures 3(a) and (b) have been prepared to show the
variations of the critical internal Rayleigh number,
Ra,, with the Biot numbers H, and H, for different
values of identical wall thickness ratios. The first of
these is for k,,, = k,, = 1 and the second for x,, =
K,> = 10 and 100. It is apparent from both of these
figures that increasing Biot numbers have a stabilizing
effect on the fluid as previously discussed in references
[3--5]. However, it is not so easy to draw a general
conclusion on the effects of the wall thickness ratios s,
and s, on the stability criteria merely by the inspection
of the results presented in this figure. Therefore, we
refer to the definition of &; given by equation {7c) and
examine the following three cases

{a) H,, (or H) — 0: equation (7c) reduces to

;= K0, tanh (a,s5;). (28a}

[URT

The, &, increases with as k,,; or s; increases, as a result,

the onset of instability is delayed as s; or «,; is
increased.
(b) H,; = a,: equation (7c) becomes
& = Kyila- {28b)

This result means that ¢; increases with x,,;, but the
wall thickness has no effect on the stability criteria for
H,, = a,

(c) H,; — = : the wall thickness has a stabilizing
effect as shown in equation (26).
To illustrate the range of validity of the lumped
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F16. 2. Effects of the lower and upper wall thickness ratios s, and s,, conductivity ratios «,,, and k,,, on the
critical internal Rayleigh number Ra..

Table 2. Comparison between Ra, computed from the present analysis and (Ra, )y, for the lumped

system
Ky = Ky2 =01 Kyl S Ky2 =1 Ky = Ky = 10
51 =35, Ra, (Ra)ump Ra, (R Jump Ra, (Ra)umgp
0.01 1524 1511 1693 1681 1707 1705
0.01 1113 1100 1528 1511 1705 1681
1 891 845 1282 1100 1640 1511
10 879 858 1278 845 1639 1100

Table 3. The effects of the Biot numbers H, and H, on the differences between Ra, computed from the present analysis and
(Ra)ump for various identical values of wall conductivity ratios and wall thickness ratios

Ky =Ky2 =0.1 Ky =HKyp =1 K1 =Ky = 10

51 =5,=01 si=5=1 5, =5,=01 sy=5,=1 5y=s5,=01 s;=s5;=1

Hl = H2 Rac (Rac)lump Rac (Rac)lump Rac (Rac)lump Rac (Rac)lump Rac (Rac)lump Rac (Rac)lump

100 1191 1100 900 845 1566 1500 1309 1100 1678 1660 1647 1560
1 1033 997 895 835 1154 1090 1266 997 1423 1100 1630 1080
0.01 780 759 861 765 900 759 1246 759 1374 809 1629 760

parameter analysis of the wall effects on the stability  of the walls are about of the same order of magnitude
criteria with the walls subjected to convective boun-  or larger than those for the fluid, the results based on
dary conditions as considered in references [3—5], we  the lumped parameter analysis are unrealistic. There-
present in Table 3 a comparison of the critical internal  fore, the validity of such results should be restricted to
Rayleigh number, Ra,, obtained from the present small thickness ratios of the walls (i.e. t; « d,i = 1,2)
analysis and that determined by the lumped parameter ~ with wall conductivities of the same order of magni-
analysis, (Ra,)jymp- The results presented in this table tude or lower than the fluid conductivity.

indicate that when both the conductivity and thickness
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APPENDIX

Principle of exchange of stabilities

It can be proved from the eigenvalue system defined by
equations (1), (3) and (4) that, the instability sets in as
stationary cells and not as overstability. The procedure for
such an analysis can be outlined by following the pattern
established in reference [5]. That is, equations (1a), (1b) and
(3a) and (3b) for a; = a, are multiplied by the complex
conjugates of v*, 6*, 6f and 6%, respectively. Integrating over
the entire range of the y-variable, and after some partial
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integrations and manipulations the following variational
problem is obtained
(—DB)a3Ra, - cos &
2 o
e+ Y [D8*DE* + (a} + éPry)B8¥]dy
_ i=0 Ji
- i
J- [D*o*D?*5* + (202 +c)Du*Di* + al{al +ep*i*]dy
o
29

where

6° = ["wawig':'(“Sz}gf(—sx)

+ K2 Ho83(L + 5)885(1 + )] (30)
and " denotes the complex conjugate, with

O =0*, y,=1 for i=0
b, =0, =1 for i=0
by= —3, ¢;=0 fori=1
b =1, g=1l+s, fori=2.

'Now, weletc = ¢, + ic;,, and equate the imaginary parts on
each side of equation (11); the resulting expression implies
thatfor (—DO) - Re, - cos 8 > 0, the imaginary part of ¢, ¢;,, =
0. This conclusion establishes the principle of exchange of
stabilities. Namely, if the fluid is heated from below, the
marginal state of instability for this system is characterized by
¢ = 0 for inclinations from the horizontal such that § < 90°.

EFFETS DE LA RESISTANCE THERMIQUE PARIETALE SUR LA STABILITE D'UN
REGIME DE CONDUCTION DANS UNE FENTE ETROITE ET INCLINEE

Résumé—On étudie analytiquement les effets de la résistance thermique pariétale sur Papparition du
mouvement de convection cellulaire dans un fluide a Pintérieur d’une fente inclinée, ayant un trés grand
allongement et soumise a des conditions aux limites convectives ; des calculs numériques sont effectués dans
le cas Pr = 0,72. Pour établir le domaine de validité d’une analyse déja utilisée antérieurement pour les effets
des parois sur la stabilité, les résultats présents sont comparés avec ceux obtenus par cette analyse. On étudie
les effets des parois sur 'analyse de transition entre les rouleaux longitudinaux et les rouleaux transversaux.

EINFLUSSE DES THERMISCHEN WANDWIDERSTANDS AUF DIE
STABILITAT DES ZUSTANDES DER REINEN WARMELEITUNG
IN EINEM SCHRAGEN SCHMALEN SPALT

Zusammenfassung—Die Einfliiss des thermischen Wandwiderstands auf das Einsetzen der zellenférmigen
Konvektionsbewegung in einem Fluid, das sich in einem schrigen Spalt mit groBem Seitenverhiltnis
befindet und konvektiven Randbedingungen unterworfen ist, werden beziiglich der Lings- und Querwalzen
analytisch und numerisch fiir den Fall Pr = 0,72 untersucht. Um den Giiltigkeitsbereich der Methode der
konzentrierten Parameter festzustellen, die in einigen vorangegangenen Arbeiten liber die Einfliisse der
Winde auf die Stabilitdtskriterien verwendet wurde, werden die vorliegenden FErgebnisse mit jenen
verglichen, die mit der Methode der konzentrierten Parameter erhalten wurden. Es wird gezeigt, daB die auf
der Methode der konzentrierten Parameter basierenden Ergebnisse unrealistisch sind, wenn die Wirmeleit-
fahigkeit und die Dicke der Winde etwa in der gleichen GroBenordnung liegen oder groBer als die des
Fluids sind. Die Einfliisse der Winde auf den Ubergangswinkel fiir den Umschlag von Lings- zu Querwalzen
wurden untersucht.

BIIMAHHUE TEPMHUYECKOIQO COMNMPOTHUBIEHHUSA CTEHKHM HA YCTOHYUBOCTH
PEXHMA TEIUIOITPOBOJAHOCTH B HAKJIOHHOM V3KOH IEJN

AHHOTANHS — AHaHTHYECKH HCCIIEYETCA BIAMSHHE TEPMUYECKOTO CONPOTHBIEHHS CTEHKM HA BO3HUKHO-
BEHHE AYCHCTONH KOHBEKUMH B XHIAKOCTH, 3aK/TIOYEHHO! BHYTPH HAKJIOHHOMN ILENEBOi NONOCTH ¢ OYeHb
GOJILLIHM OTHOWEHHEM CTOPOH IPH YCIOBHAX, KOTa HMEIOT MECTO NPOIONLHBIE H NONEPEYHbIE BaIbl.
Brinonuenst sncaennsle pacueTst s Pr= 0,72, Jlns ycTaHOBJEHUA OBNACTH [PAMEHHMOCTH AHATHIA
HA OCHOBC DACCMOTDEHHA ABJICHHS K4K CHCTEMBI CO COCPEAOTOMCHHBIMH NapaMETPaMH, NpHMEHSAE-
WErocs B PALE PAHEC NMPOBEICHHBIX HCCACNOBAHWI BIMSHHMA CTEHOK HR KPHTEDHH YCTOMYHBOCTH,
TIPOBCACHO CPaBHEHHE PE3Y/ILTATOB ITOTO AHAM3A C NONYYEHHBIMM B HacTosmek pabore. ITokasano,
YTO €C/IM MOPAAOK BEJHYMH TEIIONPOBOJHOCTH M TONIIMHBI CTEHOK TOT €, YTO H TEMIONPOBOA-
HOCTH M TONIUMHBL C/IOA KHAKOCTH, PE3YNbTATH aHAIM3a HA OCHOBE OGOGLIEHHOrO napamerpa
OKA3BLBAKOTCA HEBEPHBIMU. MccieflyeTcs BIMSHME CTEHOK HA YIOJ HAKJOHA LIEMH, NpH KOTOPOM
TPOHCXOMHT NEPEXOA OT NPOAOALHBIX K 1101IEPEH HBIM BAIAM.



